Constructions

Division of a Line Segment

To divide a line segment internally in a given ratio m : n , where both m and n are positive integers.

Steps:

Step 1: Draw a line segment $A B$ of given length using a ruler.
Step 2: Draw any ray $A X$ making an acute angle with $A B$.
Step 3: Along $A X$ mark off $(m+n)$ points, namely $A_{1}, A_{2} \ldots A_{m}, A_{m+1} \ldots A_{m+n}$
Step 4: Join B to $\mathrm{A}_{\mathrm{m}+\mathrm{n}}$
Step 5: Through the point A_{m} draw a line parallel to $A_{m+n} B$ at A_{m}. Let this line meet $A B$ at ' C^{\prime} which divides $A B$ internally in the ratio $\mathrm{m}: \mathrm{n}$.

Proof: In $\triangle A B A_{m+n}, C A_{m}$ is parallel to $B A_{m+n}$.
By basic proportionality theorem, we get,
Here ' C ' divides AB internally in the ratio m : n .

To Construct a Triangle Similar To a Given Triangle as Per the Given Scale Factor

 Construct a $\triangle \mathrm{ABC}$ in which $\mathrm{BC}=4 \mathrm{~cm}, \angle \mathrm{~B}=60^{\circ}$ and $\angle \mathrm{C}=45^{\circ}$. Also construct a triangle whose sides are $\frac{4}{3}$ times the corresponding sides of $\triangle A B C$.

Steps of construction:

Step 1: Construct a triangle ABC with the given measurement i.e. $\mathrm{BC}=4 \mathrm{~cm}, \angle \mathrm{~B}=60^{\circ}$ and $\angle \mathrm{C}$ $=75^{\circ}$
Step 2: Construct an acute angle CBX downwards.
Step 3: On BX, make 4 equal parts and mark them $B_{1}, B_{2}, B_{3}, B_{4}$.
Step 4: Join 'C' to B_{3} and draw a line through B_{4} parallel to $B_{3} C$, intersecting the extended line segment BC at C^{\prime}.
Step 5: In the same way draw $\mathrm{C}^{\prime} \mathrm{A}^{\prime}$ parallel to CA . Thus $\triangle \mathrm{A}^{\prime} \mathrm{BC}^{\prime}$ is the required triangle similar to $\triangle \mathrm{ABC}$ whose sides are $\frac{4}{3}$ times the corresponding sides of $\triangle \mathrm{ABC}$.

Construction of Tangents to a Circle

To construct the tangents to a circle from a point outside it Given: A circle with centre ' O ' and a point ' P ' outside it Required: To construct the tangents to the circle from P .

Steps of construction:

Step 1: Draw a circle with centre 'O'
Step 2: Join OP.
Step 3: Draw the perpendicular bisector OP. It meets OP at 'M'.
Step 4: Taking ' M ' as centre and OM as radius draw arcs which cut the circle with centre ' O ' at two points. Name them as Q and R .
Step 5: Join PQ and PR
Step 6: PQ and PR are the required tangents to the circle with centre ' O ' from an external point 'P'.

Note:

We can prove that the length of PQ and PR are equal.

